首页 | 本学科首页   官方微博 | 高级检索  
     


Decolorization and biosorption for Congo red by system rice hull- Schizophyllum sp. F17 under solid-state condition in a continuous flow packed-bed bioreactor
Authors:Li Xudong  Jia Rong
Affiliation:School of Life Science, Anhui University, Hefei 230039, PR China.
Abstract:Synthetic dyes are important chemical pollutants from various industries. This work developed an efficient and relatively simple continuous decolorization system rice hull-Schizophyllum sp. F17 under solid-state condition in a packed-bed bioreactor, for decolorizing Congo red. In the decolorization system, two decolorization mechanisms exist, one is decolorization by Schizophyllum sp. F17, the other is biosorption by rice hull. The decolorization efficiency was greatly affected by dye concentration and hydraulic retention time (HRT), which were quantificationally analyzed and optimized through response surface methodology (RSM). A 2(2) full factorial central composite design (CCD) was performed, and three second order polynomial models were generated to describe the effects of dye concentration and HRT on total decolorization (R2=0.902), decolorization by Schizophyllum sp. F17 (R2=0.866) and biosorption by rice hull (R2=0.890). Response surface contour plots were constructed to show the individual and cumulative effects of dye concentration and HRT, and the optimum values. A maximum total decolorization 89.71% and maximum decolorization by Schizophyllum sp. F17 60.44% was achieved at dye concentration 142.63mg/L, HRT 41h, and dye concentration 110.7mg/L, HRT 29.4h, respectively. Meanwhile, the role of manganese peroxidase (MnP) in the decolorizaion process was investigated. This study proved the feasibility of continuous mode for decolorizing synthetic dyes by white-rot fungi in solid-state fermentation bioreactors.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号