首页 | 本学科首页   官方微博 | 高级检索  
     


Salt tolerance in crop plants: new approaches through tissue culture and gene regulation
Authors:Ilga Winicov  Dhundy R. Bastola
Affiliation:(1) Departments of Microbiology and Biochemistry, University of Nevada Reno, 89557 Reno, NV, USA
Abstract:Recent approaches to study of salinity tolerance in crop plants have ranged from genetic mapping to molecular characterization of gene products induced by salt/drought stress. Transgenic plant design has allowed to test the effects of overexpression of specific prokaryotic or plant genes that are known to be up-regulated by salt/drought stress. This review summarizes current progress in the field in the context of adaptive metabolic and physiological responses to salt stress and their potential role in long term tolerance. Specifically considered are gene activation by salt, in view of proposed avenues for improved salt tolerance and the need to ascertain the additional influences of developmental regulation of such genes. Discussion includes the alternate genetic strategy we have pursued for improving salinity tolerance in alfalfa (Medicago sativa L.) and rice (Oryza sativa L.). This strategy combines single-step selection of salt-tolerant cells in culture, followed by regeneration of salt-tolerant plants and identification of genes important in conferring salt tolerance. We have postulated that activation or improved expression of a subset of genes encoding functions that are particularly vulnerable under conditions of salt-stress could counteract the molecular effects of such stress and could provide incremental improvements in tolerance. We have proceeded to identify the acquired specific changes in gene regulation for our salt-tolerant mutant cells and plants. One particularly interesting and novel gene isolate from the salt-tolerant cells is Alfin1, which encodes a putative zinc-finger regulatory protein, expressed predominantly in roots. We have demonstrated that this protein binds DNA in a sequence specific manner and may be potentially important in gene regulation in roots in response to salt and an important marker for salt tolerance in crop plants.
Keywords:Alfalfa   Arabidopsis   DNA binding factor  gene expression  rice  salt-tolerance  zinc-finger protein
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号