Abstract: | SYNOPSIS Deamination at pH 7.5 of adenosine, deoxyadenosine, cytidine and deoxycytidine by cell-free preparations of Tetrahymena pyriformis W was observed both in the presence and absence of fluoride. Deamination of 5′-AMP, 5′-dAMP, 5′-CMP, and 5′-dCMP was found only in the absence of fluoride. Dephosphorylation of the above nucleotides by acid phosphatases occurred at pH 4.5; reduced activity was noted at pH 7.5. Fluoride effectively blocked acid phosphatase activity at both pH values. This correlation of phosphatase and deaminase activities suggests a catabolic pathway for 5′-AMP and 5′-CMP whereby dephosphorylation precedes deamination. Radiolabelled substrates were used to test this hypothesis. The experiments were designed so that conversion of as little at 1.0% of the radiolabelled substrate to the deaminated product could be detected. No 5′-IMP or 5′-UMP, the expected deamination products of 5′-AMP and 5′-CMP, respectively, was recovered after incubation of the radiolabelled substrates with cell-free enzyme preparations. Thus, it appears that Tetrahymena has no 5′-AMP or 5′-CMP deaminases and that these compounds are deaminated only after conversion to nucleosides. Acid phosphatase activity toward 5′-GMP, 5′-dGMP, 5′-TMP, 5′-UMP, and 5′-XMP was also found. |