首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Spinotrapezius muscle microcirculatory function: effects of surgical exteriorization
Authors:Bailey J K  Kindig C A  Behnke B J  Musch T I  Schmid-Schoenbein G W  Poole D C
Institution:Departments of Kinesiology Anatomy and Physiology, Kansas State University, Manhattan, Kansas 66506-5602, USA.
Abstract:Intravital microscopy facilitates insights into muscle microcirculatory structural and functional control, provided that surgical exteriorization does not impact vascular function. We utilized a novel combination of phosphorescence quenching, microvascular oxygen pressure (microvascular PO(2)), and microsphere (blood flow) techniques to evaluate static and dynamic behavior within the exposed intact (I) and exteriorized (EX) rat spinotrapezius muscle. I and EX muscles were studied under control, metabolic blockade with 2,4-dinitrophenol (DNP), and electrically stimulated conditions with 1-Hz contractions, and across switches from 21 to 100% and 10% inspired O(2). Surgical preparation did not alter spinotrapezius muscle blood flow in either I or EX muscle. DNP elevated muscle blood flow approximately 120% (P < 0.05) in both I and EX muscles (P > 0.05 between I and EX). Contractions reduced microvascular PO(2) from 30.4 +/- 4.3 to 21.8 +/- 4.8 mmHg in I muscle and from 33.2 +/- 3.0 to 25.9 +/- 2.8 mmHg in EX muscles with no difference between I and EX. In each O(2) condition, there was no difference (each P > 0.05) in microvascular PO(2) between I and EX muscles (21% O(2): I = 37 +/- 1; EX = 36 +/- 1; 100%: I = 62 +/- 5; EX = 51 +/- 9; 10%: I = 20 +/- 1; EX = 17 +/- 2 mmHg). Similarly, the dynamic behavior of microvascular PO(2) to altered inspired O(2) was unaffected by the EX procedure half-time (t(1/2)) to 100% O(2): I = 23 +/- 5; EX = 23 +/- 4; t(1/2) to 10%: I = 14 +/- 2; EX = 16 +/- 2 s, both P > 0.05]. These results demonstrate that the spinotrapezius muscle can be EX without significant alteration of microvascular integrity and responsiveness under the conditions assessed.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号