首页 | 本学科首页   官方微博 | 高级检索  
     


Hemoglobin and red blood cells alter the response of expired nitric oxide to mechanical forces
Authors:Berg J T  Deem S  Kerr M E  Swenson E R
Affiliation:Departments of Medicine and Anesthesiology, Veterans Affairs Puget Sound Health Care System and the University of Washington, Seattle, Washington 98108, USA. jtberg@u.washington.edu
Abstract:Expired nitric oxide (NO(e)) varies with hemodynamic or ventilatory perturbations, possibly due to shear stress- or stretch-stimulated NO production. Since hemoglobin (Hb) binds NO, NO(e) changes may reflect changes in blood volume and flow. To determine the role of blood and mechanical forces, we measured NO(e) in anesthetized rabbits, as well as rabbit lungs perfused with buffer, red blood cells (RBCs) or Hb following changes in flow, venous pressure (P(v)), and positive end-expiratory pressure (PEEP). In buffer-perfused lungs decreases in flow and P(v) reduced NO(e), but NO(e) rose when RBCs and Hb were present. These findings are consistent with changes in vascular NO production, whose detection is obscured in blood-perfused lungs by the more dominant effect of Hb NO scavenging. PEEP decreased NO(e) in all perfused lungs but increased NO(e) in live rabbits. The NO(e) fall with PEEP in isolated lungs is consistent with flow redistribution from alveolar septal capillaries to extra-alveolar vessels and decreased surface area or a direct, stretch-mediated depression of lung epithelial NO production. In live rabbits, increased NO(e) may reflect blood flow reduction and decreased Hb NO scavenging and/or autonomic responses that increase NO production. We conclude that blood and systemic responses render it difficult to use NO(e) changes as an accurate measure of lung tissue NO production.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号