首页 | 本学科首页   官方微博 | 高级检索  
     


Chemical synthesis, absolute configuration, and stereochemistry of formation of 10-hydroxywarfarin: a major oxidative metabolite of (+)-(R)-warfarin from hepatic microsomal preparations
Authors:R F Lawrence  A E Rettie  A C Eddy  W F Trager
Affiliation:Department of Medicinal Chemistry, University of Washington, Seattle 98195.
Abstract:The synthesis of a diastereomerically pure 10-hydroxywarfarin [4-hydroxy-3-(2-hydroxy-3-oxo-1-phenylbutyl)-2H-1 benzopyran-2-one] was accomplished in three steps from racemic warfarin. The relative configuration of the synthetic product was established by conversion to a cyclic derivative followed by NMR and X-ray diffraction analysis. Absolute stereochemistry was determined by enzymatic conversion of either of the pure enantiomers of warfarin to a 10-hydroxy metabolite of known relative configuration. Metabolic formation of 10-hydroxywarfarin was studied using hepatic microsomal preparations from female rats and man. The formation of 10-hydroxywarfarin catalyzed by hepatic microsomes from both dexamethasone-treated rats and man was highly stereoselective [(R)/(S): 3.4-9.0] for (R)-warfarin. In contrast, little stereoselectivity was observed in reactions catalyzed by untreated rat liver microsomes. The resultant stereochemistry at the site of oxidation was also found to be highly dependent on substrate stereochemistry. (R)-Warfarin gave (9R;10S)-10-hydroxywarfarin with only a trace of the (9R;10R) isomer irrespective of which enzyme preparation was used for catalysis, while (S)-warfarin gave (9S;10R)-10-hydroxywarfarin with only a trace of the (9S;10S) isomer, again irrespective of which enzyme preparation was used for catalysis.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号