Development and characterization of a mouse cell line expressing the human V2 vasopressin receptor gene |
| |
Authors: | M Birnbaumer V Hinrichs A P Themmen A P Themen |
| |
Affiliation: | Department of Cell Biology, Baylor College of Medicine, Houston, Texas 77030. |
| |
Abstract: | Human genomic DNA and the HSV tk gene were cotransfected into mouse Ltk- cells and assayed for the acquisition of a Gs-coupled receptor to obtain cell lines expressing human receptors that are so far unavailable. The transfected cells were distributed into 96-well microtitration plates at a density such that after HAT (100 microM hypoxanthine, 1 microM aminopterin, and 10 microM thymidine) selection each well contained, on the average, two to three tk+ cell clones. After replication, half of them were tested for expression of a new phenotype: an adenylyl cyclase stimulatory receptor not normally expressed in the Ltk- recipient cell. The screen yielded a positive result on testing cells arising from the third transfection, the newly expressed receptor is that for arginine vasopressin, commonly referred to as type 2 or V2. DNA from primary transformants (HTB-1 cells) served to obtain secondary transformants by the same technique (HTB-2 cells). Pharmacological properties confirmed that this new receptor, which stimulates adenylyl cyclase activity 7- to 10-fold, is the human V2 receptor and not the activated homologous murine gene. The new cell line provides a permanent accessible source to study the human receptor, by-passing the need for human kidneys. The V2 receptor was susceptible to homologous down-regulation in the HTB-2 cell, but no down-regulation of the cell authentic prostaglandin E1 receptor was observed. The vasopressin receptor did not modify phospholipase-C activity in these cells as expected from V2 receptors. Thus, we successfully applied genomic DNA-mediated gene transfer and were able to develop a cell line expressing a Gs-coupled human receptor of low abundance and poor accessibility. |
| |
Keywords: | |
|
|