首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Structures of TraI in solution
Authors:Clark  Nicholas J  Raththagala  Madushi  Wright  Nathan T  Buenger  Elizabeth A  Schildbach  Joel F  Krueger  Susan  Curtis  Joseph E
Institution:1. REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
2. NEQC, Núcleo de Estudos em Química Computacional, Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, 36036-330, Brazil
Abstract:Cobalt and potassium are biologically important metal elements that are present in a large array of proteins. Cobalt is mostly found in vivo associated with a corrin ring, which represents the core of the vitamin B12 molecule. Potassium is the most abundant metal in the cytosol, and it plays a crucial role in maintaining membrane potential as well as correct protein function. Here, we report a thorough analysis of the geometric properties of cobalt and potassium coordination spheres that was performed with high resolution on a representative set of structures from the Protein Data Bank and complemented by quantum mechanical calculations realized at the DFT level of theory (B3LYP/ SDD) on mononuclear model systems. The results allowed us to draw interesting conclusions on the structural characteristics of both Co and K centers, and to evaluate the importance of effects such as their association energies and intrinsic thermodynamic stabilities. Overall, the results obtained provide useful data for enhancing the atomic models normally applied in theoretical and computational studies of Co or K proteins performed at the quantum mechanical level, and for developing molecular mechanical parameters for treating Co or K coordination spheres in molecular mechanics or molecular dynamics studies.
Figure
Cobalt and potassium are biologically crucial metals that are present in a wide array of proteins. Here, a thorough analysis was performed of the geometric properties of Co and K coordination spheres and quantum mechanical calculations on mononuclear model systems. These results can be employed to enhance atomic QM models applied to the theoretical study of Co or K proteins, and to develop molecular mechanical parameters for use in molecular mechanics studies
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号