首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The CH3PH2 and CH3PH isomers: isomerization,hydrogen release,thermodynamic, and spectroscopy properties
Authors:Rommel B Viana  Albérico B F da Silva
Institution:1. Indian Institute of Information Technology, Allahabad, 211012, India
3. Deparment of Bioinformatics, Central University of Bihar Patna BITS Campus, Patna, India
2. Centre of Biomedical Research, Raebareli Road, Lucknow, 226 014, India
Abstract:Curcumin has been reported to be therapeutically active but has poor bioavailability, half life, and high rate of metabolic detoxifcation. Most of the hydrophobic and acidic drugs get transported through human serum albumin (HSA). Binding of drugs to serum protein increases their half-life. The present study is focused to analyze interaction of curcumin with HSA by NMR and docking studies. In order to investigate the binding affinity of curcumin with HSA, NMR based diffusion techniques and docking study have been carried out. We report that curcumin has shown comparable binding affinity value vis-a-vis standard, the accessible surface area (ASA) of human serum albumin (uncomplexed) and its docked complex with curcumin at both binding sites was calculated and found to be close to that of warfarin and diazepam respectively. Conclusion drawn from our study demonstrates that curcumin interacts with HSA strongly thereby its poor half life is due to high rate of its metabolic detoxification as reported in literature.
In diffusion NOE process the signals of small molecules remain (tryptophan and curcumin) which interact with macromolecules. However, the signals of molecules which do not interact disappear. This indicates curcumin and tryptophan molecule bind with human serum albumin
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号