首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Biomolecular sample considerations essential for optimal performance from cryogenic probes
Authors:Zakia Biswas  Nadine Merkley  Raymond T Syvitski
Institution:1. National Research Council of Canada, 1411 Oxford St., Halifax, NS, Canada
Abstract:For compounds dissolved in non-polar solvents, nuclear magnetic resonance spectroscopic investigations have benefited greatly from the advent of cryogenically cooled probes. Unfortunately the allure of significant increases in sensitivity may not be realized for compounds such as metabolites that are dissolved in solvents with high ionic-strengths such as solutions typically utilized for metabolomic or biomolecular investigations. In some cases there is little benefit from a cryogenically cooled probe over a conventional room temperature probe. Various sample preparation methods have been developed to minimize the detrimental effects of salt; for large numbers of metabolomic samples these preparation methods tend to be onerous and impractical. An alternative to manipulating the sample, is to utilize a probe that is designed to have a higher tolerance for solutions with high ionic-strengths. In order to acquire high-quality optimal data and choose the appropriate probe configuration (especially important for comparative quantitative investigations) the effects of salts and buffers on cryogenic probe performance must be understood. Herein we detail sample considerations for two cryogenic probes, a standard 5 mm and a narrow diameter 1.7 mm, in an effort to identify via integrals, intensities and noise levels the optimal choice for biomolecular investigations.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号