Determinants of intramyocellular triglyceride turnover: implications for insulin sensitivity |
| |
Authors: | Moro Cédric Bajpeyi Sudip Smith Steven R |
| |
Affiliation: | Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, USA. |
| |
Abstract: | Increased intramyocellular triglyceride (IMTG) content is found in both insulin-sensitive endurance-trained subjects and insulin-resistant obese/type 2 diabetic subjects. A high turnover rate of the IMTG pool in athletes is proposed to reduce accumulation of lipotoxic intermediates interfering with insulin signaling. IMTG turnover is a composite measure of the dynamic balance between lipolysis and lipid synthesis; both are influenced by mitochondrial fat oxidation and plasma free fatty acid availability. Therefore, more attention should be given to the factors controlling the rate of turnover of IMTG. In this review, particular attention has been given to muscle oxidative capacity, plasma free fatty acid availability, and IMTG hydrolysis (lipolysis) and synthesis. A higher oxidative, lipolytic, and lipid storage capacity in the muscle of endurance-trained subjects reflects a higher fractional turnover of the IMTG pool. Thus the co-localization of intermyofibrillar lipid droplets and mitochondria allows for a fine coupling of lipolysis of the IMTG pool to mitochondrial beta-oxidation. Conversely, reduced oxidative capacity and a mismatch between IMTG lipolysis and beta-oxidation might be detrimental to insulin sensitivity by generating several lipotoxic intermediates in sedentary populations including obese/type 2 diabetic subjects. Further studies are clearly required to better understand the relationship between the rate of turnover of IMTG and the accumulation of lipotoxic intermediates in the pathophysiology of insulin resistance. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|