首页 | 本学科首页   官方微博 | 高级检索  
     


Gonadotropin-induced differentiation of granulosa cells is associated with the co-ordinated regulation of cytoskeletal proteins involved in cell-contact formation
Authors:Avri Ben-Ze'ev,Fortü  ne Kohen,Abraham Amsterdam
Affiliation:Department of Genetics, Weizmann Institute of Science, Rehovot, Israel.
Abstract:The gonadotropin-induced differentiation of granulosa cells in culture was studied, with particular attention being given to the organization and expression of cytoskeletal proteins involved in the formation of cell contacts, as well as to progesterone production. Gonadotropin-treated granulosa cells formed clusters of spherical cells containing few vinculin-containing focal contacts, exhibited a diffuse distribution of actin, and had few adherens junctions but more gap junctions than cells grown without the hormone. In gonadotropin-treated cells, the levels of synthesis of the cytoskeletal proteins, vinculin, alpha-actinin, and actin, were dramatically reduced, but the synthesis of the tubulins and vimentin was unaffected. Decreased levels of synthesis of these cytoskeletal proteins were also observed in an in vitro translation assay using poly(A)+ RNA from gonadotropin-treated cells. The hybridization of cytoplasmic RNA with cloned actin and vimentin cDNAs revealed a marked decrease in actin-RNA levels, but no change in vimentin-RNA levels in these cells. Such alterations in cytoskeletal-protein expression were also observed in cells treated with compounds that cause elevated cellular cAMP levels by acting at a stage beyond gonadotropin receptor stimulation. Furthermore, by keeping the cells in a spherical configuration in suspension culture, or by treating the cells with cytochalasin B, similar changes in the synthesis of these cytoskeletal proteins were observed. During this process, there was a concomitant increased in the production of progesterone (although to a much lesser extent in suspension culture) that occurred in parallel with the appearance of large mitochondria with lamellar-tubular cristae and a well-developed smooth endoplasmic reticulum, these features being characteristic of granulosa-lutein cells in vivo. Our results suggest that changes in cell shape and contact, together with the regulation of cytoskeletal elements that determine cellular morphogenesis, are part of the gonadotropin-controlled differentiation program in granulosa cells and may also occur during the maturation of these cells in vivo.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号