首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The Influence of Leaf Position and Defoliation on the Assimilation and Translocation of Carbon in White Clover (Trifolium repens L.) 1. Carbon Distribution Patterns
Authors:D F  CHAPMAN; M J  ROBSON
Institution:* Institute of Grassland and Environmental Research Hurley, Maidenhead, Berks SL6 5LR
{dagger} Agricultural Botany Department, University of Reading P.O. Box 217, Reading RG6 2 AH, UK
Abstract:The assimilation of carbon (C) by, and distribution of 14C from,leaves at each end of an unbroken sequence of ten mature leaveson the main stolon of clonal plants of white clover (Trifoliumrepens L.) were measured to identify intra-plant factors determiningthe direction of C movement from leaves. Leaves at two intermediatepositions were also measured. Localized movement of 14C to sinks at the same node as, or atthe one to two nodes immediately behind, the fed leaf accountedfor 40–50% of the total 14C exported by all measured leaves.A further 50–60% of exported 14C was therefore availablefor more-distant sinks, and the direction of translocation ofthis C was determined by the relative total strength or demand(number x size x rate of activity or growth) of sinks forwardof, or behind, the leaf in question. Thus 85% of the 14C exportedfrom the youngest measured leaf moved toward the base of thestolon, while about 60% of the 14C exported from the oldestleaf moved acropetally. Defoliating plants to leave just one mature leaf on the mainstolon (at any one of the same four positions studied in undefoliatedplants), and no leaves on branches, resulted in: (1) increasednet photosynthetic rate in all residual leaves: (2) increased%export of fixed C from one of the four leaves; (3) increasedexport to the main stolon apex from all except the eldest leaf;(4) increased export to branches from three of the four leaves;and (5) decreased export to stolon tissue and roots from allleaves, within 3 d of defoliation. These responses would seemto ensure the fastest possible replacement of lost leaf areaand, thus, restoration of homeostatic growth. The observed patternsof C assimilation and distribution in both undefoliated anddefoliated white clover plants are consistent with the generalrules of source-sink theory; the distance between sources andcompeting sinks, and relative sink strength, emerge as the mostimportant intra-plant factors governing C movement. These resultsemphasize the need to consider plant morphology, and the modularnature of plant growth, when interpreting patterns of resourceallocation in clonal plants, or plant responses to stressessuch as partial defoliation. Trifolium repens L, white clover, photosynthesis, assimilate translocation, defoliation
Keywords:
本文献已被 Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号