首页 | 本学科首页   官方微博 | 高级检索  
     


Fate of horseradish peroxidase in the secretion zone of the rat incisor enamel organ
Authors:Ernst Kallenbach
Affiliation:Department of Anatomy, College of Medicine, University of Florida, Gainesville, Florida 32610 U.S.A.
Abstract:Adult CDF albino rats were killed from 10 min to 6 hr after a single intravenous dose of HRP. Experimental and control tissues were reacted for peroxidase activity and processed for light and electron microscopy. At 10 min, all extracellular spaces of the secretion zone showed reaction product. A reaction was also seen around Tomes' processes and in a layer of enamel spaces in the region of thin enamel. At later time intervals, reactions around Tomes' processes were also seen in regions of thicker enamel. Tracer was located preferentially at the growth fronts of rod and interrod enamel, and also diffused for some distance into enamel. From 2 to 6 hr, the enamel over the transition zone became heavily labeled. The tracer penetrated for more than 90 μm into the enamel and was localized mainly in the interrod enamel. Droplets of dense stippled material in the extracellular spaces between Tomes' processes did not mix with tracer, but sites which contain a light stippled material in the controls (extracellular spaces, vesicles within ameloblasts) showed a reaction. It is concluded that (1) the basal terminal bars of secretory ameloblasts do not impede the flow of large molecules, (2) the apical terminal bars are permeable in early secretion, become increasingly tight as secretion progresses, and are again permeable in the transition zone, (3) ameloblasts can shuttle large extracellular molecules towards the enamel growth fronts, (4) large molecules can diffuse into enamel; rod and interrod enamel differ with regard to the diffusion of large molecules, (5) ameloblasts phagocytose significant amounts of light stippled material. The possibility is considered that extracellular enamel precursor molecules move preferentially towards the enamel growth fronts, perhaps by a mechanism involving membrane flow, and diffuse through enamel in similar fashion as HRP.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号