首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Isolation of a thermostable variant of Lip2 lipase from Yarrowia lipolytica by directed evolution and deeper insight into the denaturation mechanisms involved
Authors:Florence Bordes  Laurence Tarquis  Jean-Marc NicaudAlain Marty
Institution:a Université de Toulouse; INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, F-31077 Toulouse, France
b CNRS, UMR5504, F-31400 Toulouse, France
c INRA, UMR792, Ingénierie des Systèmes Biologiques et des Procédés, F-31400 Toulouse, France
d CNRS, UMR2585, INRA, UMR1238, AgroParistech Microbiologie et Génétique Moléculaire, F-78850 Thiverval-Grignon, France
Abstract:Lip2 lipase from Yarrowia lipolytica is a very promising lipase with many potential applications (e.g. resolution of racemic mixtures, production of fine chemicals). Unfortunately this potential is impeded by a very low thermostability for temperatures higher than 40 °C. Error-prone PCR and screening of the library in a high-performance yeast expression system (Y. lipolytica) enabled a thermostable variant to be identified. This variant presents only one mutation, the free cysteine 244 is changed into an alanine. At 60 °C, the half-life time of the purified variant was 127-fold increased compared to the WT enzyme (from 1.5 min to 3 h). Saturation mutagenesis experiment at position 244 demonstrated that the presence of a cysteine at this position was responsible for the thermal denaturation. It was demonstrated that WT Lip2 and the thermostable variant are both inactivated through aggregation mechanisms, but that the kinetics and the nature of the aggregation were different. For the WT enzyme, rapid intermolecular disulphide bridge interchanges triggered by the free cysteine 244 mediates aggregation. For the variant C244A, aggregation still occurred but much slower than for the WT lipase and was mainly driven by hydrophobic forces.
Keywords:Lipase  Error-prone PCR  High-throughput screening  Thermostability  Aggregation  Disulphide interchange
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号