首页 | 本学科首页   官方微博 | 高级检索  
     


Proteasome inhibitor-induced apoptosis of glioma cells involves the processing of multiple caspases and cytochrome c release
Authors:Wagenknecht B  Hermisson M  Groscurth P  Liston P  Krammer P H  Weller M
Affiliation:Laboratory of Molecular Neuro-Oncology, Department of Neurology, University of Tübingen, School of Medicine, Tübingen, Germany.
Abstract:The proteasome is a multiprotein complex that is involved in the intracellular protein degradation in eukaryotes. Here, we show that human malignant glioma cells are susceptible to apoptotic cell death induced by the proteasome inhibitors, MG132 and lactacystin. The execution of the apoptotic death program involves the processing of caspases 2, 3, 7, 8, and 9. Apoptosis is inhibited by ectopic expression of X-linked inhibitor of apoptosis (XIAP) and by coexposure to the broad-spectrum caspase inhibitor, benzoyl-VAD-fluoromethyl ketone (zVAD-fmk), but not by the preferential caspase 8 inhibitor, crm-A. It is interesting that specific morphological alterations induced by proteasome inhibition, such as dilated rough endoplasmic reticulum and the formation of cytoplasmic vacuoles and dense mitochondrial deposits, are unaffected by zVAD-fmk. Apoptosis is also inhibited by ectopic expression of Bcl-2 or by an inhibitor of protein synthesis, cycloheximide. Further, cytochrome c release and disruption of mitochondrial membrane potential are prominent features of apoptosis triggered by proteasome inhibition. Bcl-2 is a stronger inhibitor of cytochrome c release than zVAD-fmk. XIAP and crm-A fail to modulate cytochrome c release. These data place cytochrome c release downstream of Bcl-2 activity but upstream of XIAP- and crm-A-sensitive caspases. The partial inhibition of cytochrome c release by zVAD-fmk indicates a positive feedback loop that may involve cytochrome c release and zVAD-fmk-sensitive caspases. Finally, death ligand/receptor interactions, including the CD95/CD95 ligand system, do not mediate apoptosis induced by proteasome inhibition in human malignant glioma cells.
Keywords:Proteasome    MG132    Apoptosis    Glioma
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号