首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Limited effects of combined dietary copper deficiency/iron overload on oxidative stress parameters in rat liver and plasma
Authors:Cockell Kevin A  Wotherspoon Andrew T L  Belonje Bartholomeus  Fritz Melissa E  Madère René  Hidiroglou Nick  Plouffe Louise J  Ratnayake W M Nimal  Kubow Stan
Institution:

aNutrition Research Division, Health Products and Food Branch, Health Canada, Ottawa, ON, Canada K1A 0L2

bSchool of Dietetics and Human Nutrition, Macdonald Campus of McGill University, Ste-Anne-de-Bellevue, QC, Canada H9X 3V9

Abstract:Copper (Cu) deficiency decreases the activity of Cu-dependent antioxidant enzymes such as Cu,zinc-superoxide dismutase (Cu,Zn-SOD) and may be associated with increased susceptibility to oxidative stress. Iron (Fe) overload represents a dietary oxidative stress relevant to overuse of Fe-containing supplements and to hereditary hemochromatosis. In a study to investigate oxidative stress interactions of dietary Cu deficiency with Fe overload, weanling male Long–Evans rats were fed one of four sucrose-based modified AIN-93G diets formulated to differ in Cu (adequate 6 mg/kg diet vs. deficient 0.5 mg/kg) and Fe (adequate 35 mg/kg vs. overloaded 1500 mg/kg) in a 2×2 factorial design for 4 weeks prior to necropsy. Care was taken to minimize oxidation of the diets prior to feeding to the rats. Liver and plasma Cu content and liver Cu,Zn-SOD activity declined with Cu deficiency and liver Fe increased with Fe overload, confirming the experimental dietary model. Liver thiobarbituric acid reactive substances were significantly elevated with Fe overload (pooled across Cu treatments, 0.80±0.14 vs. 0.54±0.08 nmol/mg protein; P<.0001) and not affected by Cu deficiency. Liver cytosolic protein carbonyl content and the concentrations of several oxidized cholesterol species in liver tissue did not change with these dietary treatments. Plasma protein carbonyl content decreased in Cu-deficient rats and was not influenced by dietary Fe overload. The various substrates (lipid, protein and cholesterol) appeared to differ in their susceptibility to the in vivo oxidative stress induced by dietary Fe overload, but these differences were not exacerbated by Cu deficiency.
Keywords:Copper deficiency  Iron overload  Oxidative stress
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号