Epigenetic alteration of imprinted genes during neural differentiation of germline-derived pluripotent stem cells |
| |
Authors: | Hye Jeong Lee Na Young Choi Seung-Won Lee Kisung Ko Tae Sook Hwang Dong Wook Han |
| |
Affiliation: | 1. Department of Stem Cell Biology, Konkuk University School of Medicine, Seoul, Korea;2. Center for Stem Cell Research, Institute of Advanced Biomedical Science, Konkuk University, Seoul, Korea;3. Department of Medicine, College of Medicine, Chung-Ang University, Seoul, Korea;4. Department of Pathology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Korea |
| |
Abstract: | Spermatogonial stem cells (SSCs), which are unipotent stem cells in the testes that give rise to sperm, can be converted into germline-derived pluripotent stem (gPS) by self-induction. The androgenetic imprinting pattern of SSCs is maintained even after their reprogramming into gPS cells. In this study, we used an in vitro neural differentiation model to investigate whether the imprinting patterns are maintained or altered during differentiation. The androgenetic patterns of H19, Snrpn, and Mest were maintained even after differentiation of gPS cells into NSCs (gPS-NSCs), whereas the fully unmethylated status of Ndn in SSCs was altered to somatic patterns in gPS cells and gPS-NSCs. Thus, our study demonstrates epigenetic alteration of genomic imprinting during the induction of pluripotency in SSCs and neural differentiation, suggesting that gPS-NSCs can be a useful model to study the roles of imprinted genes in brain development and human neurodevelopmental disorders. |
| |
Keywords: | Androgenetic imprinting germline-derived pluripotent stem cells in vitro model neural stem cells spermatogonial stem cells |
|
|