首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Frameshift mutagenesis by eucaryotic DNA polymerases in vitro
Authors:T A Kunkel
Abstract:The frequency and specificity of frameshift errors produced during a single round of in vitro DNA synthesis by DNA polymerases-alpha, -beta, and -gamma (pol-alpha, -beta, and -gamma, respectively) have been determined. DNA polymerase-beta is the least accurate enzyme, producing frameshift errors at an average frequency of one error for each 1,000-3,000 nucleotides polymerized, a frequency similar to its average base substitution accuracy. DNA polymerase-alpha is approximately 10-fold more accurate, producing frameshifts at an average frequency of one error for every 10,000-30,000 nucleotides polymerized, a frequency which is about 2- to 6-fold lower than the average pol-alpha base substitution accuracy. DNA polymerase-gamma is highly accurate, producing on the average less than one frameshift error for every 200,000-400,000 nucleotides polymerized. This represents a more than 10-fold higher fidelity than for base substitutions. Among the collection of sequenced frameshifts produced by DNA polymerases-alpha and beta, both common features and distinct specificities are apparent. These specificities suggest a major role for eucaryotic DNA polymerases in modulating frameshift fidelity. Possible mechanisms for production of frameshifts are discussed in relation to the observed biases. One of these models has been experimentally supported using site-directed mutagenesis to change the primary DNA sequence of the template. Alteration of a pol-beta frameshift hotspot sequence TTTT to CTCT reduced the frequency of pol-beta-dependent minus-one-base errors at this site by more than 30-fold, suggesting that more than 97% of the errors at the TTTT run involve a slippage mechanism.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号