首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of xylazine on interovulatory interval and serum progesterone concentrations in the horse mare
Authors:Cross D T  Threlfall W R
Affiliation:Department of Animal Science The Ohio State University, Columbus, OH 43210 USA.
Abstract:The objective of this study was to determine the effect of the alpha(2)-adrenergic agonist, xylazine, on interovulatory interval and progesterone concentrations in the horse mare. Mares were assigned to one of four treatments: Group 1 (controls) received an intramuscular injection (i.m.) of 5 cc saline (n=6), Group 2 received 10 mg prostaglandin F(2alpha) (PGF(2alpha)) i.m. (n=5), Group 3 received 500 mg xylazine i.m. (n=6) and group 4 received an intravenous injection (i.v) of 350 mg xylazine (n=6). Treatment was administered on Day 10 of the estrous cycle (Day 0 = Day of detected ovulation). There was no difference in length of interovulatory interval between PGF(2alpha)-treated mares and control mares (mean +/- SEM; 18.8 +/- 1.0 versus 21.7 +/- 1.6 d). When compared with either xylazine-treated group, PGF(2alpha)-treated mares had a shorter interovulatory interval (18.3 +/- 1.0 d versus 22.2 +/- 0.6 and 22.8 +/- 1.3 d, respectively; P < 0.05). There was no difference in the length of interovulatory interval between control mares and either xylazine-treated group. At the time of treatment all mares had progesterone concentrations > 10 ng/ml, therefore the onset of luteolysis was defined as the day of the estrous cycle when progesterone concentrations decreased below 10 ng/ml. In PGF(2alpha)-treated mares, this event occurred earlier than in any other group (Day 11.2 +/- 0.2 of the estrous cycle versus 16.0 +/- 1.3 for control, Day 15.7 +/- 0.2 for Group 3 and Day 15.2 +/- 0.6 for Group 4; P < 0.002). It was concluded that a single treatment with xylazine, either by an intramuscular or intravenous route, had no significant effect on interovulatory interval or progesterone concentrations in horse mares.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号