首页 | 本学科首页   官方微博 | 高级检索  
     


Defective intracellular Ca(2+) signaling contributes to cardiomyopathy in Type 1 diabetic rats
Authors:Choi Kin M  Zhong Yan  Hoit Brian D  Grupp Ingrid L  Hahn Harvey  Dilly Keith W  Guatimosim Silvia  Lederer W Jonathan  Matlib Mohammed A
Affiliation:Department of Pharmacology and Cell Biophysics, University of Cincinnati, Ohio 45267, USA.
Abstract:The goal of the study was to determine whether defects in intracellular Ca(2+) signaling contribute to cardiomyopathy in streptozotocin (STZ)-induced diabetic rats. Depression in cardiac systolic and diastolic function was traced from live diabetic rats to isolated individual myocytes. The depression in contraction and relaxation in myocytes was found in parallel with depression in the rise and decline of intracellular free Ca(2+) concentration ([Ca(2+)](i)). The sarcoplasmic reticulum (SR) Ca(2+) store and rates of Ca(2+) release and resequestration into SR were depressed in diabetic rat myocytes. The rate of Ca(2+) efflux via sarcolemmal Na(+)/Ca(2+) exchanger was also depressed. However, there was no change in the voltage-dependent L-type Ca(2+) channel current that triggers Ca(2+) release from the SR. The depression in SR function was associated with decreased SR Ca(2+)-ATPase and ryanodine receptor proteins and increased total and nonphosphorylated phospholamban proteins. The depression of Na(+)/Ca(2+) exchanger activity was associated with a decrease in its protein level. Thus it is concluded that defects in intracellular Ca(2+) signaling caused by alteration of expression and function of the proteins that regulate [Ca(2+)](i) contribute to cardiomyopathy in STZ-induced diabetic rats. The increase in phospholamban, decrease in Na(+)/Ca(2+) exchanger, and unchanged L-type Ca(2+) channel activity in this model of diabetic cardiomyopathy are distinct from other types of cardiomyopathy.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号