首页 | 本学科首页   官方微博 | 高级检索  
     


Molecular mechanics of mouse cardiac myosin isoforms
Authors:Alpert Norman R  Brosseau Christine  Federico Andrea  Krenz Maike  Robbins Jeffrey  Warshaw David M
Affiliation:Department of Molecular Physiology and Biophysics, University of Vermont College of Medicine, Burlington 05405, USA.
Abstract:Two myosin isoforms are expressed in myocardium, alphaalpha-homodimers (V(1)) and betabeta-homodimers (V(3)). V(1) exhibits higher velocities and myofibrillar ATPase activities compared with V(3). We also observed this for cardiac myosin from normal (V(1)) and propylthiouracil-treated (V(3)) mice. Actin velocity in a motility assay (V(actin)) over V(1) myosin was twice that of V(3) as was the myofibrillar ATPase. Myosin's average force (F(avg)) was similar for V(1) and V(3). Comparing V(actin) and F(avg) across species for both V(1) and V(3), our laboratory showed previously (VanBuren P, Harris DE, Alpert NR, and Warshaw DM. Circ Res 77: 439-444, 1995) that mouse V(1) has greater V(actin) and F(avg) compared with rabbit V(1). Mouse V(3) V(actin) was twice that of rabbit V(actin). To understand myosin's molecular structure and function, we compared alpha- and beta-cardiac myosin sequences from rodents and rabbits. The rabbit alpha- and beta-cardiac myosin differed by eight and four amino acids, respectively, compared with rodents. These residues are localized to both the motor domain and the rod. These differences in sequence and mechanical performance may be an evolutionary attempt to match a myosin's mechanical behavior to the heart's power requirements.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号