首页 | 本学科首页   官方微博 | 高级检索  
   检索      


How does dune morphology shape coastal EC habitats occurrence? A remote sensing approach using airborne LiDAR on the Mediterranean coast
Institution:1. School of Geography and Planning, Guangdong Key Laboratory for Urbanization and Geo-simulation, Sun Yat-Sen University, Guangzhou 510275, China;2. Xinhua College of Sun Yat-sen University, Guangzhou 510520, China;3. Beach and Dune Systems (BEADS) Lab, School of the Environment, Faculty of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia;4. Department of Geography and Anthropology, 227 Howe Russell Kniffen Geoscience Complex, Louisiana State University, Baton Rouge 70803, USA
Abstract:We examined the relationship between coastal habitats (sensu European Union Habitats Directive) and local dune morphology along a Mediterranean coastal dune system by integrating field collected vegetation data and remotely sensed imagery. Specifically, we described the morphological profile of each EC habitat based on the morphological variables that are most likely to affect their occurrence, including elevation, slope, curvature, northness, eastness and sea distance. In addition, we assessed the role and strength of each morphological variable in determining the occurrence of EC habitats.We used 394 random vegetation plots representative of six EC habitats (Habitat 1210: “Annual vegetation of drift lines”; Habitat 2110: “Embryonic shifting dunes”; Habitat 2120: “Shifting dunes along the shoreline with Ammophila arenaria”; Habitat 2210 and 2230: “Crucianellion maritimae fixed beach dunes” and “Malcolmietalia dune grasslands”; Habitat 2250: “Coastal dunes with Juniperus spp.”; Habitat 2260: “Cisto-Lavanduletalia dune sclerophyllous scrubs”) found along the Tyrrhenian coast of central Italy. We derived each morphological variable from a DTM (Digital Terrain Model) obtained from 2-m resolution LiDAR (Light Detection And Range) images. The mean value of each variable was calculated at different spatial scales using buffer areas of increasing radius (2 m, 4 m, 8 m) around each vegetation plot. Mean morphological values for each EC habitat were compared using Kruskal-Wallis rank test. The role and strength of the relationship between habitat type and the morphological variables were assessed using Generalized Linear Models.EC habitats occur differentially across dune morphology, and the role and strength of each morphological variable define habitat specificity. Dune elevation and sea distance were determined to be the key factors in shaping EC habitat occurrence along this section of the Mediterranean coast. Identification of the close relationship between habitat type and morphological variables deriving from airborne LiDAR imagery points to the high potential of such remote sensing tool for analyzing and monitoring the integrity of coastal dune ecosystems. As airborne LiDAR enables the rapid collection of extremely accurate topographic data over large areas, it also offers useful information for the management of these threatened and fragile ecosystems.
Keywords:Elevation  Sea distance  Plant community  Field vegetation data  Conservation strategy
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号