首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Epigenetic interactions among three dTph1 transposons in two homologous chromosomes activate a new excision-repair mechanism in petunia.
Authors:A van Houwelingen  E Souer  J Mol  R Koes
Institution:Department of Genetics, Institute for Molecular Biological Sciences, Vrije Universiteit, BioCentrum Amsterdam, de Boelelaan 1087, 1081 HV, Amsterdam, The Netherlands.
Abstract:Unstable anthocyanin3 (an3) alleles of petunia with insertions of the Activator/Dissociation-like transposon dTph1 fall into two classes that differ in their genetic behavior. Excision of the (single) dTph1 insertion from class 1 an3 alleles results in the formation of a footprint, similar to the "classical" mechanism observed for excisions of maize and snapdragon transposons. By contrast, dTph1 excision and gap repair in class 2 an3 alleles occurs via a newly discovered mechanism that does not generate a footprint at the empty donor site. This novel mechanism depends on the presence of two additional dTph1 elements: one located in cis, 30 bp upstream of the an3 translation start in the same an3 allele, and a homologous copy, which is located in trans in the homologous an3 allele. Absence of the latter dTph1 element causes a heritable suppression of dTph1 excision-repair from the homologous an3 allele by the novel mechanism, which to some extent resembles paramutation. Thus, an epigenetic interaction among three dTph1 copies activates a novel recombination mechanism that eliminates a transposon insertion.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号