首页 | 本学科首页   官方微博 | 高级检索  
     


Allometric covariation: a hallmark behavior of plants and leaves
Authors:Price Charles A  Weitz Joshua S
Affiliation:School of Plant Biology, University of Western Australia, Crawley, Perth 6009, Australia. charles.price@uwa.edu.au
Abstract:Size is one of the most important axes of variation among plants. As such, plant biologists have long searched for unifying principles that can explain how matter and energy flux and organ partitioning scale with plant size. Several recent models have proposed a universal biophysical basis for numerous scaling phenomena in plants based on vascular network geometry. Here, we review statistical analyses of several large-scale plant datasets that demonstrate that a true hallmark of plant form variability is systematic covariation among traits. This covariation is constrained by allometries that combine and trade off with one another, rather than any single universal allometric scaling exponent for a trait or suite of traits. Further, we show that covariation can be successfully modeled using network approaches that allow for species-specific designs in plants and geometric approaches that constrain relationships among economic traits in leaves. Finally, we report large-scale efforts utilizing semi-automated software tools that quantify physical networks and can inform our attempts to link vascular network structure to plant form and function. Collectively, this work highlights how the linking of morphology, biomass partitioning and the structure of physical distribution networks can improve our empirical and theoretical understanding of important drivers of plant functional diversity.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号