Role of CD14 expression in the differentiation-apoptosis switch in human monocytic leukemia cells treated with 1alpha,25-dihydroxyvitamin D3 or dexamethasone in the presence of transforming growth factor beta1. |
| |
Authors: | Y Kanatani T Kasukabe J Okabe-Kado Y Yamamoto-Yamaguchi N Nagata K Motoyoshi Y Honma |
| |
Affiliation: | Saitama Cancer Center Research Institute, Ina, Japan. |
| |
Abstract: | Transforming growth factor beta (TGF-beta) enhanced the growth-inhibitory activities of dexamethasone (Dex) and 1alpha,25-dihydroxyvitamin D3 (VD3) on human monocytoid leukemia U937 cells. TGF-beta and VD3 synergistically increased the expression of differentiation-associated markers such as the CD11b and CD14 antigens, whereas TGF-beta and Dex did not. On the other hand, TGF-beta and Dex synergistically increased the number of Apo2.7-positive cells, which represents the early stage of apoptosis, whereas TGF-beta and VD3 did not, suggesting that TGF-beta enhanced apoptosis with Dex and enhanced monocytic differentiation with VD3. In the presence of TGF-beta, the retinoblastoma susceptibility gene product, pRb, was synergistically dephosphorylated by Dex as well as VD3. TGF similarly enhanced the expression of the p21Waf1 gene in U937 cells treated with Dex and VD3. TGF-beta dose-dependently increased the expression of Bcl-2 and Bad and decreased the expression of Bcl-X(L) in U937 cells. Dex enhanced the down-regulation of Bcl-X(L) expression in TGF-beta-treated cells, whereas VD3 blocked this down-regulation of Bcl-X(L). However, the down-regulation of Bcl-X(L) by treatment with the antisense oligomer did not affect the apoptosis or differentiation of U937 cells. The apoptosis of CD14-positive cells was suppressed in the VD3 plus TGF-beta-treated cultures. These results suggest that the expression of CD14 is involved in the survival of differentiated cells. |
| |
Keywords: | |
|
|