首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Bifurcation structure of a chemostat model for an age-structured predator and its prey
Authors:Toth Damon J A
Institution:Department of Mathematics, University of Utah, Salt Lake City, UT, USA. toth@math.utah.edu
Abstract:We model a chemostat containing an age-structured predator and its prey using a linear function for the uptake of substrate by the prey and two different functional responses (linear and Monod) for the consumption of prey by the predator. Limit cycles (LCs) caused by the predator's age structure arise at Hopf bifurcations at low values of the chemostat dilution rate for both model cases. In addition, LCs caused by the predator-prey interaction arise for the case with the Monod functional response. At low dilution rates in the Monod case, the age structure causes cycling at lower values of the inflowing resource concentration and conversely prevents cycling at higher values of the inflowing resource concentration. The results shed light on a similar model by Fussmann et al. G. Fussmann, S. Ellner, K. Shertzer, and N. Hairston, Crossing the Hopf bifurcation in a live predator-prey system, Science 290 (2000), pp. 1358-1360.], which correctly predicted conditions for the onset of cycling in a chemostat containing an age-structured rotifer population feeding on algal prey.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号