首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Two classes of ouabain receptors in chick ventricular cardiac cells and their relation to (Na+,K+)-ATPase inhibition, intracellular Na+ accumulation, Ca2+ influx, and cardiotonic effect
Authors:T Kazazoglou  J F Renaud  B Rossi  M Lazdunski
Abstract:The biochemical and pharmacological properties of the (Na+,K+)-ATPase have been studied at different stages of chick embryonic heart development in ovo and under cell culture conditions. The results show the existence of two families of ouabain binding sites: a low affinity binding site with a dissociation constant (Kd) of 2-6 microM for the ouabain-receptor complex and a high affinity binding site with a Kd of 26-48 nM. Levels of high affinity sites gradually decrease during cardiac ontogenesis to reach a plateau near 14 days of development. Conversely the number of low affinity binding sites is essentially invariant between 5 days and hatching. Cultured cardiac cells display the same binding characteristics as those found in intact ventricles. Inhibition of 86Rb+ uptake in cultured cardiac cells and an increase in intracellular Na+ concentration, due to (Na+,K+)-ATPase blockade, occur in a ouabain concentration range corresponding to the saturation of the low affinity ouabain site. Ouabain-stimulated 45Ca2+ uptake increases in parallel with the increase in the intracellular Na+ concentration. It is suppressed in Na+-free medium or when Na+ is replaced by Li+ suggesting that the increase is due to the indirect activation of the Na+/Ca2+ exchange system in the plasma membrane. Dose-response curves for the inotropic effects of ouabain on papillary muscle and on ventricular cells in culture indicate that the development of the cardiotonic properties is parallel to the saturation of the low affinity binding site for ouabain. Therefore, inhibition of the cardiac (Na+,K+)-ATPase corresponding to low affinity ouabain binding sites seems to be responsible for both the cardiotonic and cardiotoxic effects of the drug.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号