首页 | 本学科首页   官方微博 | 高级检索  
     


Testosterone responsiveness of spleen and liver in female lymphotoxin beta receptor-deficient mice resistant to blood-stage malaria
Authors:Wunderlich Frank  Dkhil Mohamed A  Mehnert Liv I  Braun Juliane V  El-Khadragy Manal  Borsch Elena  Hermsen Derik  Benten W Peter M  Pfeffer Klaus  Mossmann Horst  Krücken Jürgen
Affiliation:Division of Molecular Parasitology and Biological and Medical Research Center, Heinrich-Heine-University, Universit?tsstr. 1, 40225 Düsseldorf, Germany.
Abstract:Disrupted signaling through lymphotoxin beta receptor (LTbetaR) results in severe defects of the spleen and even loss of all other secondary lymphoid tissues, making mice susceptible to diverse infectious agents. Surprisingly, however, we find that female LTbetaR-deficient mice are even more resistant to blood stages of Plasmodium chabaudi malaria than wild-type C57BL/6 mice. Higher resistance of LTbetaR-deficient mice correlates with an earlier onset of reticulocytosis, and the period of anemia is shorter. After surviving fulminant parasitemias of about 35%, mice develop long-lasting protective immunity against homologous rechallenge, with both spleen and liver acting as anti-malaria effectors. Testosterone suppresses resistance, i.e. all mice succumb to infections during or shortly after peak parasitemia. At peak parasitemia, testosterone does not essentially affect cellularity and apoptosis in the spleen, but aggravates liver pathology in terms of increased cell swelling, numbers of apoptotic and binucleated cells and reduced serum alkaline phosphatase levels, and conversely, reduces inflammatory lymphocytic infiltrates in the liver. In the spleen, hybridization of cDNA arrays identified only a few testosterone-induced changes in gene expression, in particular upregulation of INFgamma and IFN-regulated genes. By contrast, a much larger number of testosterone-affectable genes was observed in the liver, including genes involved in regulation of the extracellular matrix, in chemokine and cytokine signaling, and in cell cycle control. Collectively, our data suggest that testosterone dysregulates the inflammatory response in spleen and liver during their differentiation to anti-malaria effectors in malaria-resistant female LTbetaR-deficient mice, thus contributing to the testosterone-induced lethal outcome of malaria.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号