首页 | 本学科首页   官方微博 | 高级检索  
     


The single chlorophyll a molecule in the cytochrome b6f complex: unusual optical properties protect the complex against singlet oxygen
Authors:Dashdorj Naranbaatar  Zhang Huamin  Kim Hanyoup  Yan Jiusheng  Cramer William A  Savikhin Sergei
Affiliation:Department of Physics, Purdue University, West Lafayette, Indiana 47907, USA.
Abstract:The cytochrome b(6)f complex of oxygenic photosynthesis mediates electron transfer between the reaction centers of photosystems I and II and facilitates coupled proton translocation across the membrane. High-resolution x-ray crystallographic structures (Kurisu et al., 2003; Stroebel et al., 2003) of the cytochrome b(6)f complex unambiguously show that a Chl a molecule is an intrinsic component of the cytochrome b(6)f complex. Although the functional role of this Chl a is presently unclear (Kuhlbrandt, 2003), an excited Chl a molecule is known to produce toxic singlet oxygen as the result of energy transfer from the excited triplet state of the Chl a to oxygen molecules. To prevent singlet oxygen formation in light-harvesting complexes, a carotenoid is typically positioned within approximately 4 A of the Chl a molecule, effectively quenching the triplet excited state of the Chl a. However, in the cytochrome b(6)f complex, the beta-carotene is too far (> or =14 Angstroms) from the Chl a for effective quenching of the Chl a triplet excited state. In this study, we propose that in this complex, the protection is at least partly realized through special arrangement of the local protein structure, which shortens the singlet excited state lifetime of the Chl a by a factor of 20-25 and thus significantly reduces the formation of the Chl a triplet state. Based on optical ultrafast absorption difference experiments and structure-based calculations, it is proposed that the Chl a singlet excited state lifetime is shortened due to electron exchange transfer with the nearby tyrosine residue. To our knowledge, this kind of protection mechanism against singlet oxygen has not yet been reported for any other chlorophyll-containing protein complex. It is also reported that the Chl a molecule in the cytochrome b(6)f complex does not change orientation in its excited state.
Keywords:Chl a, chlorophyll a   DAS, decay-associated spectra   fwhm, full width at half-maximum   ML, Mastigocladus laminosus   MLb6f, cytochrome b6f complex from ML   MLb6f-crystal, dissolved x-ray diffraction quality crystals of the cytochrome b6f complex from ML   SC, Synechococcus PCC 7002   SCb6f, cytochrome b6f complex from SC   Sp, spinach chloroplast   Spb6f, cytochrome b6f complex from Sp   carotenoid, Car
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号