Vaccinia virus F12L protein is required for actin tail formation, normal plaque size, and virulence |
| |
Authors: | Zhang W H Wilcock D Smith G L |
| |
Affiliation: | Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom. |
| |
Abstract: | Vaccinia virus gene F12L is shown to encode a 65-kDa protein that is synthesized early and late during infection and that is not modified by glycosylation. Computational sequence comparison revealed that related proteins are encoded by all sequenced chordopoxviruses. A virus deletion mutant lacking the F12L gene (vDeltaF12L) and a revertant virus with the F12L gene reinserted into the deletion mutant (vF12L-rev) were constructed and analyzed. A version of the F12L gene with a C-terminal amino acid tag derived from the influenza virus hemagglutinin and that is recognized by a monoclonal antibody was also inserted into the F12L locus of vDeltaF12L. Loss of the F12L protein reduced the formation of IMV 2-fold, but there was a dramatic (99.5%) reduction in actin tail formation, and the levels of cell-associated enveloped virus and extracellular enveloped virus were reduced 8- to 11-fold and 7-fold, respectively. Consistent with the lack of actin tail formation, vDeltaF12L produced a very small plaque. The vDeltaF12L virus was severely attenuated in vivo, such that a dose of vDeltaF12L 10,000-fold greater than the dose of wild-type virus that induced severe disease was unable to induce disease in mice infected intranasally. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|