首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Daily novel wheel running reorganizes and splits hamster circadian activity rhythms.
Authors:M R Gorman  T M Lee
Institution:Department of Psychology, University of Michigan, Ann Arbor 48109-1109, USA. mgorman@psy.ucsd.edu
Abstract:The phenomenon of splitting of locomotor activity rhythms in constant light has implied that the mammalian circadian pacemaker is composed of multiple interacting circadian oscillators. Exposure of male Syrian hamsters to novel running wheels also induces splitting in some reports, although novel wheel running (NWR) is better known for its effects on altering circadian phase and the length of the free-running period. In three experiments, the authors confirm and extend earlier reports of split rhythms induced by NWR. Male Syrian hamsters, entrained to LD 14:10, were transferred for 6 to 11 consecutive days to darkened novel Wahmann wheels at ZT 4 and were returned to their home cages at ZT 9. All hamsters ran robustly in the novel wheels. NWR caused a marked reorganization of home cage wheel-running behavior: Activity onsets delayed progressively with each additional day of NWR. After 11 days, activity onset in the nighttime scotophase was delayed by 7 h and disappeared completely in 2 hamsters (Experiment 1). After 6 to 7 days of NWR (Experiment 2), activity onset delayed by 5 h. Transfer of hamsters to constant darkness (DD) after 7 days of NWR revealed clearly split activity rhythms: The delayed nighttime activity bout was clearly identifiable and characterized by a short duration. A second bout associated with the former time of NWR was equally distinct and exhibited a similarly short duration. These components rejoined after 3 to 5 days in DD accomplished via delays and advances of the nighttime and afternoon components, respectively. The final experiment established that rejoining of activity components could be prevented by perpetuating the light-dark:light-dark cycle used to induce split rhythms. The data suggest that NWR causes selective phase shifting of some circadian oscillators and that component oscillators interact strongly in constant darkness.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号