首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Textmining in support of knowledge discovery for vaccine development
Authors:Schönbach Christian  Nagashima Takeshi  Konagaya Akihiko
Institution:Biomedical Knowledge Discovery Team, RIKEN Genomic Sciences Center (GSC), Yokohama 230-0045, Japan. schoen@postman.riken.jp
Abstract:Complete genome data of infectious microorganisms permit systematic computational sequence-based predictions and experimental testing of candidate vaccine epitopes. Both, predictions and the interpretation of experiments rely on existing information in the literature which is mostly manually extracted and curated. The growing amount of data and literature information has created a major bottleneck for the interpretation of results and maintenance of curated databases. The lack of suitable free-text information extraction, processing, and reporting tools prompted us to develop a knowledge discovery support system that enhances the understanding of immune response and vaccine development. The current prototype system, Gene expression/epitpopes/protein interaction (GEpi), focuses on molecular functions of HIV-infected T-cells and HIV epitope information, using textmining, and interrelation of biomolecular data from domain-specific databases with MEDLINE abstract-inferred information. Results showed that extraction and processing of molecular interaction, disease associations, and gene ontology-derived functional information generate intuitive knowledge reports that aid the interpretation of host-pathogen interaction. In contrast, epitope (word and sequence) information in MEDLINE abstracts is surprisingly sparse and often lacks necessary context information, such as HLA-restriction. Since the majority of epitope information is found in tables, figures, and legends of full-text articles, its extraction may not require sophisticated natural language processing techniques. Support of vaccine development through textmining requires therefore the timely development of domain-specific extraction rules for full-text articles, and a knowledge model for epitope-related information.
Keywords:T-cell  HIV infection  Epitope  Vaccine development  Text information retrieval  Textmining  Molecular interaction  Disease association  Gene ontology  MeSH
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号