Abstract: | The direct contribution of forces in tree structures in the lung to lung recoil pressure and changes in recoil pressure induced by alterations of the forces are analyzed. The analysis distinguishes the contributions of axial and circumferential tensions in the trees and indicates that only axial tensions directly contribute to static recoil. This contribution is derived from analysis of the axial forces transmitted across a random plane transecting the lung. The change in recoil pressure induced by changes in axial tension is similarly derived. Alterations of circumferential tensions in the trees indirectly change recoil by causing nonuniform deformations of the surrounding lung parenchyma, and a continuum elasticity solution for the stress induced by the deformations is derived. Sample calculations are presented for the airway tree based on available data on airway morphometric and mechanical properties. The increase in recoil pressure accompanying increases in axial and circumferential tensions with contraction of airway smooth muscle is also analyzed. The calculations indicate that axial stresses in the airway tree out to bronchioles directly contribute only a small fraction of the static recoil pressure. However, it is found that contraction of smooth muscle in these airways can increase recoil pressure appreciably (10-20%), mainly by the deformation of the parenchyma with increases in circumferential tension in smaller airways. The results indicate that the geometric and mechanical properties of the airway tree are such that only peripheral elements of the tree can substantially affect the elastic properties of the lung. The possible contributions of vascular trees for which data on mechanical and morphometric properties are more limited are also discussed. |