首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Localization of nonerythroid spectrin and actin in mouse oocytes and preimplantation embryos
Authors:IIkka Reima  Eero Lehtonen
Institution:Department of Pathology, University of Helsinki, Haartmaninkatu 3, SF-00290 Helsinki, Finland;Department of' Electron Microscopy, University of Helsinki, Manncrheimintie 172, SF-00280 Helsinki, Finland
Abstract:Mouse oocytes, cleavage-stage embryos, and blastocyst-stage embryos were studied to show the distribution of both an immunoanalog to nonerythroid spectrin (p 230) and F-actin. Using antibodies to nonerythroid spectrin, diffuse, positive cytoplasmic fluorescence was regularly seen in oocytes and embryo cells. The presence of nonerythroid spectrin in oocytes was confirmed by immunoblotting. Oocytes usually exhibited an inconspicuous submembranous layer of nonerythroid spectrin, which was more pronounced in the area of the polar body. Oocytes regularly exhibited a peripheral concentration of actin. Throughout the cleavage and blastocyst stages, a cortical layer of nonerythroid spectrin and actin was usually observed in embryo cells. These submembranous layers on the outer surface of the embryo were relatively thin as compared to those in areas of intercellular contact. The contact areas regularly showed distinct positive staining, including a concentration of label at the most peripheral region of each contact area. This resulted in the presence of ring-like fluorescence around each blastomere. Nonerythroid spectrin and actin showed concentration to the contact area between the oocyte and the polar body. Although the general localization patterns of nonerythroid spectrin and actin were similar, double-staining experiments revealed that slightly different planes of focus were necessary to obtain sharp definition of the fluorescence of these components in areas of intercellular contact: the ring-like concentration of nonerythroid spectrin appeared to be localized more peripherally than that of actin. The cells of preimplantation embryos show motile features that include actual cell movements and striking changes in cell shape (e.g., during compaction). The submembraneous layers of nonerythroid spectrin and actin may contribute to the regulation of the deformability and thus the shape of embryo cells.(ABSTRACT TRUNCATED AT 250 WORDS)
Keywords:To whom offprint requests should be sent
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号