首页 | 本学科首页   官方微博 | 高级检索  
   检索      


A specialized host-vector system for the in Vivo cloning of the trp operon of wild-type and mutant strains of Salmonella typhimurium by generalized transduction
Authors:Thomas Patterson  Ronald Bauerle
Institution:Department of Biology, University of Virginia, Charlottesville, Virginia 22903 USA
Abstract:Using in vitro methods, a 14.2-kb EcoRI fragment of the Salmonella typhimurium chromosome containing the trp operon plus associated flanking sequences from deletion mutant delta trpDCB763 was cloned into the EcoRI site of plasmid pBR322 in a S. typhimurium host. An in vivo cloning vector was constructed from the recombinant plasmid by the in vitro excision of a SalI fragment that contains the entire trp operon. The derived plasmid (pSTP21) carries a hybrid insert made up of the 5.4-kb EcoRI-SalI upstream flanking sequence and the 3.2-kb SalI-EcoRI downstream flanking sequence. Plasmid pSTP21 has been used as a receptor plasmid to clone a variety of mutant and wild-type trp operons by RecA-dependent in vivo recombination between the insert DNA of the plasmid and the homologous trp flanking sequences of transducing DNA fragments transferred into the cell by bacteriophage P22. The host-vector system developed for the in vivo cloning permits the differentiation of plasmid transductants from chromosomal transductants on the primary selective medium. Expression of the cloned trp operons is regulated normally by tryptophan. A substantial amplification of trp enzymes is attainable upon derepression. The recombinant plasmids are stably inherited in RecA+ and RecA- S. typhimurium hosts. However, conditions of high expression of the trp operon lead to a rapid loss of cellular viability and of plasmid stability.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号