首页 | 本学科首页   官方微博 | 高级检索  
   检索      


An active-site mutation in the human immunodeficiency virus type 1 proteinase (PR) causes reduced PR activity and loss of PR-mediated cytotoxicity without apparent effect on virus maturation and infectivity.
Authors:J Konvalinka  M A Litterst  R Welker  H Kottler  F Rippmann  A M Heuser  and H G Krusslich
Institution:J Konvalinka, M A Litterst, R Welker, H Kottler, F Rippmann, A M Heuser, and H G Kräusslich
Abstract:Infectious retrovirus particles are derived from structural polyproteins which are cleaved by the viral proteinase (PR) during virion morphogenesis. Besides cleaving viral polyproteins, which is essential for infectivity, PR of human immunodeficiency virus (HIV) also cleaves cellular proteins and PR expression causes a pronounced cytotoxic effect. Retroviral PRs are aspartic proteases and contain two copies of the triplet Asp-Thr-Gly in the active center with the threonine adjacent to the catalytic aspartic acid presumed to have an important structural role. We have changed this threonine in HIV type 1 PR to a serine. The purified mutant enzyme had an approximately 5- to 10-fold lower activity against HIV type 1 polyprotein and peptide substrates compared with the wild-type enzyme. It did not induce toxicity on bacterial expression and yielded significantly reduced cleavage of cytoskeletal proteins in vitro. Cleavage of vimentin in mutant-infected T-cell lines was also markedly reduced. Mutant virus did, however, elicit productive infection of several T-cell lines and of primary human lymphocytes with no significant difference in polyprotein cleavage and with similar infection kinetics and titer compared with wild-type virus. The discrepancy between reduced processing in vitro and normal virion maturation can be explained by the observation that reduced activity was due to an increase in Km which may not be relevant at the high substrate concentration in the virus particle. This mutation enables us therefore to dissociate the essential function of PR in viral maturation from its cytotoxic effect.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号