首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Maternal high-fat diet induces sex-specific endocannabinoid system changes in newborn rats and programs adiposity,energy expenditure and food preference in adulthood
Institution:1. Division of “Experimental Obstetrics,” Clinic of Obstetrics, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Campus Virchow-Klinikum, Berlin, Germany;2. Clinic of Obstetrics, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Campus Virchow-Klinikum, Berlin, Germany;1. Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico;2. Center for Pregnancy and Newborn Research, Department of Obstetrics and Gynecology, University of Texas Health Science Center at San Antonio, TX 78229, USA
Abstract:Early life inadequate nutrition triggers developmental adaptations and adult chronic disease. Maternal high-fat (HF) diet promotes visceral obesity and hypothalamic leptin resistance in male rat offspring at weaning and adulthood. Obesity is related to over active endocannabinoid system (ECS). The ECS consists mainly of endogenous ligands, cannabinoid receptors (CB1 and CB2), and the enzymes fatty acid anandamide hydrolase (FAAH) and monoacylglycerol lipase (MAGL). We hypothesized that perinatal maternal HF diet would regulate offspring ECS in hypothalamus and brown adipose tissue (BAT) at birth, prior to visceral obesity development, and program food preference and energy expenditure of adult offspring. Female rats received control diet (C, 9% fat) or isocaloric high-fat diet (HF, 28% fat) for 8 weeks before mating, and throughout gestation and lactation. We evaluated C and HF offspring at birth and adulthood. At birth, maternal HF diet decreased leptinemia and increased hypothalamic CB1, orexin-A, and proopiomelanocortin while it decreased thyrotropin-releasing hormone (Trh) in male pups. Differentially, maternal HF diet increased hypothalamic CB2 in female pups. In BAT, maternal HF diet decreased CB1 and increased CB2 in male and female pups, respectively. Besides presenting different molecular ECS profile at birth, HF adult offspring developed overweight, higher adiposity and high-fat diet preference, independently of the sex, but only males presented hyperleptinemia and higher energy expenditure. In conclusion, maternal HF diet alters ECS components and energy metabolism targets in hypothalamus and BAT of offspring at birth, in a sex-specific manner, which may contribute for hyperphagia, food preference and higher adiposity later in life.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号