首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Investigating the healing mechanisms of an angiogenesis‐promoting topical treatment for diabetic wounds using multimodal microscopy
Authors:Joanne Li  Andrew J Bower  Zane Arp  Eric J Olson  Claire Holland  Eric J Chaney  Marina Marjanovic  Paritosh Pande  Aneesh Alex  Stephen A Boppart
Institution:1. Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana‐Champaign, Urbana, Illinois;2. Department of Bioengineering, University of Illinois at Urbana‐Champaign, Urbana, Illinois;3. Department of Electrical and Computer Engineering, University of Illinois at Urbana‐Champaign, Urbana, Illinois;4. Discovery Medicine, HF DPU, GlaxoSmithKline, King of Prussia, Pennsylvania;5. Carle‐Illinois College of Medicine, University of Illinois at Urbana‐Champaign, Urbana, Illinois
Abstract:Impaired skin wound healing is a significant comorbid condition of diabetes that is caused by poor microcirculation, among other factors. Studies have shown that angiogenesis, a critical step in the wound healing process in diabetic wounds, can be promoted under hypoxia. In this study, an angiogenesis‐promoting topical treatment for diabetic wounds, which promotes angiogenesis by mimicking a hypoxic environment via inhibition of prolyl hydroxylase resulting in elevation or maintenance of hypoxia‐inducible factor, was investigated utilizing a custom‐built multimodal microscopy system equipped with phase‐variance optical coherence tomography (PV‐OCT) and fluorescence lifetime imaging microscopy (FLIM). PV‐OCT was used to track the regeneration of the microvasculature network, and FLIM was used to assess the in vivo metabolic response of mouse epidermal keratinocytes to the treatment during healing. Results show a significant decrease in the fluorescence lifetime of intracellular reduced nicotinamide adenine dinucleotide, suggesting a hypoxic‐like environment in the wounded skin, followed by a quantitative increase in blood vessel density assessed by PV‐OCT. Insights gained in these studies could lead to new endpoints for evaluation of the efficacy and healing mechanisms of wound‐healing drugs in a setting where delayed healing does not permit available methods for evaluation to take place. image
Keywords:diabetes  fluorescence lifetime imaging microscopy  label‐free imaging  optical coherence tomography  wound healing
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号