1. Mechanisms in Cell Biology and Disease Research Group, University of South Australia, Adelaide, South Australia, Australia;2. Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
Abstract:
Coronary heart disease is one of the largest causes of death worldwide, making this a significant health care issue. A critical problem for the adult human heart is that it does not undergo effective repair in response to damage, leaving patients with a poor prognosis. Unlike the adult, fetal hearts have the ability to repair after myocardial damage. Using two‐photon microscopy, we have visualised the morphological and metabolic changes following myocardial infarction in sheep fetuses, to characterise response to cardiac injury in a mammalian model. Following myocardial infarction, fetal hearts showed no significant increase in collagen deposition in the region of the infarction, when compared to either the surrounding tissue or shams. In contrast, metabolic activity (i. e. NAD(P)H and FAD) was significantly reduced in the region of myocardial infarction, when compared to either the surrounding tissue or sham hearts. For comparison, we also imaged two hearts from preadolescent sheep (sham and myocardial infarction) and showed highly ordered collagen deposition with decreased metabolic activity within the infarcted area. Therefore, two‐photon imaging had the capacity to image both morphological and metabolic changes in response to myocardial infarction and showed differences in the response with age. Picture : Two‐photon imaging of myocardial infarction ( b and d ) enabled the visualisation of increased collagen (blue; Em=431 nm) and changes in other tissue autofluorescence (green; Em=489–606 nm) in fetal ( a and b ) and preadolescent ( c and d ) hearts, compared to shams ( a and c ). The excitation wavelength was 840 nm. Scale bars: 10 μm.