首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Films of end-grafted hyaluronan are a prototype of a brush of a strongly charged, semiflexible polyelectrolyte with intrinsic excluded volume
Authors:Attili Seetharamaiah  Borisov Oleg V  Richter Ralf P
Institution:Biosurfaces Unit, CIC biomaGUNE, Paseo Miramon 182, 20009 Donostia - San Sebastian, Spain.
Abstract:Hyaluronan (HA) is a naturally occurring linear, negatively charged polysaccharide that plays a vital role in the organization and function of pericellular coats and extracellular matrices in vertebrates, and that is becoming increasingly popular in biomedical applications. To gain insight into the physical phenomena that govern the mechanical behavior of HA assemblies, we have studied the response of films of end-grafted HA to compression over a large range of ionic strength. Compression forces were measured as a function of the absolute distance between a colloidal probe and the planar surface on which the HA film was constructed, using a combined atomic force microscopy and reflection interference contrast microscopy setup. The HA films were well-defined in the sense that they are made of chains with a narrow size distribution that are grafted at controlled density to a solid support. Detailed comparison of the experimental data with analytical expressions derived from polymer and polyelectrolyte brush theory reveals that films of end-grafted HA behave as strongly charged polyelectrolyte brushes. To quantitatively reproduce the experimental data, intrinsic excluded volume interactions and chain stiffness of the polymer backbone must be taken into account. At low ionic strength, chains become almost fully stretched. In our experimental system, several micrometer thick films are formed that reach a hydration of up to 99.98%, and the brush thickness decreases by more than 5-fold with increasing ionic strength. More generally, the study provides quantitative theoretical predictions for the film thickness and compressive response as a function of HA length, grafting density and ionic strength.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号