Abstract: | Nifurtimox is reduced by rat liver microsomes to a nitro anion-free radical as indicated by ESR spectroscopy. This subcellular fraction gives a steady state radical concentration which is proportional to the square root of the protein concentration, suggesting that the nifurtimox anion radical is a necessary intermediate in the reduction and that the radical decays through a nonenzymatic second order process. The steady state concentration of the anion radical in the microsomal system is not decreased by superoxide dismutase or catalase, thus indicating that neither the superoxide anion nor hydrogen peroxide is an intermediary in the generation of the anion radical. The steady state concentration of the anion radical in the microsomal system is also not altered in the presence of metyrapone or CO and is decreased in the presence of NADP+ and p-chloromercuribenzoate. This observation suggests that the formation of nifurtimox anion radical is mediated through NADPH-cytochrome P-450 (c) reductase and not by the cytochrome P-450 system. In accordance with this interpretation, a model system consisting of NADPH and FMN-reduced nifurtimox to the nitro anion-free radical. Nifurtimox anion radical generation is significantly stimulated by rat brain and testes homogenates. The enhanced free radical formation may be the basic cause of nifurtimox toxicity in mammals. |