首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The protonation state of the cross-linked tyrosine during the catalytic cycle of cytochrome c oxidase
Authors:Gorbikova Elena A  Wikström Mårten  Verkhovsky Michael I
Institution:Helsinki Bioenergetics Group, Institute of Biotechnology, University of Helsinki, P. O. Box 65, Viikinkaari 1, FI-00014 Helsinki, Finland.
Abstract:Cytochrome c oxidase is the terminal complex of the respiratory chain in mitochondria and some aerobic bacteria and is responsible for most of the O(2) consumption in biology. The key reaction in the catalysis of O(2) reduction is O-O bond scission that requires four electrons and a proton. In our recent work (Gorbikova, E. A., Belevich, I., Wikstrom, M., and Verkhovsky, M. I. (2008) Proc. Natl. Acad. Sci. U. S. A. 105, 10733-10737), it was shown that the cross-linked Tyr-280 (Paracoccus denitrificans numbering) provides the proton for O-O bond cleavage. The deprotonated Tyr-280 must be reprotonated later on in the catalytic cycle to serve as a proton donor for the next oxygen reduction event. To find the reaction step at which the cross-linked Tyr-280 becomes reprotonated, all further steps of the catalytic cycle after O-O bond cleavage were followed by infrared spectroscopy. We found that complete reprotonation of the tyrosine is linked to the formation of the one-electron reduced state coupled to reduction of the Cu(B) site.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号