Systematics and evolution of the Australian knob-tail geckos (Nephrurus, Carphodactylidae, Gekkota): plesiomorphic grades and biome shifts through the Miocene |
| |
Authors: | Oliver Paul M Bauer Aaron M |
| |
Affiliation: | Australian Centre for Evolutionary Biology and Biodiversity, University of Adelaide, Adelaide, SA 5005, Australia. paul.oliver@adelaide.edu.au |
| |
Abstract: | Clades that predate the origin of biomes that they inhabit provide unique opportunities to examine both when major environmental transitions occurred, and how lineages adapted to these changes. The isolated island continent Australia has undergone a profound environmental transition through the Miocene, from relatively mesic to predominantly arid; however, we have much to learn about both the timing of this change, and how organisms may have responded to it. The family Carphodactylidae is an ancient Gondwanan group of geckos that occurs across all major Australian biomes. A multilocus (ND2, Rag-1, c-mos) phylogenetic and dating analysis of the most ecologically diverse clade within this group, the genus Nephrurus (sensuBauer, 1990) reveals that two of three morphological taxa historically recognized (the 'spiny knob-tails' and 'Underwoodisaurus') are relatively species depauperate, pleisomorphic basal grades that diversified through the late Oligocene and early Miocene, and are now absent from most of the arid biome. Based on their deep divergence and morphological distinctiveness we recognize two lineages (milii and sphyrurus) as monotypic genera, the later of which is named herein (Uvidicolus nov. gen). In contrast, a third morphological group, the 'smooth knob-tails,' is a monophyletic group of five exclusively arid zone burrowing species that has radiated relatively recently (mid-Miocene). Our phylogeny indicates that successful colonization of this novel and challenging biome by Nephrurus correlates with an initial shift to terrestriality and adaptation to at least seasonally arid conditions around the early Miocene, and the eventual evolution and subsequent mid-Miocene radiation of a lineage specialized for burrowing. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|