首页 | 本学科首页   官方微博 | 高级检索  
     


Generation of precise point mutation mice by footprintless genome modification
Authors:Yuka Morioka  Yoshitaka Fujihara  Masaru Okabe
Affiliation:1. Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, Japan;2. Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
Abstract:Point mutation mice are a key tool in the study of biological functions of genomic DNA sequences and the creation of human disease models. These mice are produced by homologous recombination combined with site‐specific recombinase, which allows removal of drug selection cassettes. However, the methods currently available leave ectopic sequences in the “inactive” intron region of the targeted genome in addition to the desired mutation. Since recent research suggests that the intron region may actually have some functionality, these sequences could potentially interfere with neighboring gene expression and, as a result, affect the mouse phenotype. To completely avoid this issue, we used the PiggyBac transposon to remove selection cassettes and achieve precise genome modification without leaving behind a footprint. This PiggyBac system allowed us to successfully generate mice carrying an artificially introduced Wv point mutation in the Kit gene, and these mice were confirmed to have phenotypes identical to spontaneous Wv mutation mice. Generation of Wv‐mutation corrected mice was also possible, and phenotypes were completely restored. Our footprintless genome modification technology can generate precise point mutation mice with only the desired mutation, and they reflect an accurate phenotype that makes these mice a reliable and “worry‐free” research resource. 52:68–77, 2014. © 2013 Wiley Periodicals, Inc.
Keywords:PiggyBac transposon  BAC recombineering  Wv mutation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号