首页 | 本学科首页   官方微博 | 高级检索  
     


Regularized estimation for the accelerated failure time model
Authors:Cai T  Huang J  Tian L
Affiliation:Department of Biostatistics, Harvard University, Boston, Massachusetts 02115, U.S.A.;Department of Preventive Medicine, Northwestern University, Chicago, Illinois 60611, U.S.A.
Abstract:Summary .  In the presence of high-dimensional predictors, it is challenging to develop reliable regression models that can be used to accurately predict future outcomes. Further complications arise when the outcome of interest is an event time, which is often not fully observed due to censoring. In this article, we develop robust prediction models for event time outcomes by regularizing the Gehan's estimator for the accelerated failure time (AFT) model ( Tsiatis, 1996 , Annals of Statistics 18, 305–328) with least absolute shrinkage and selection operator (LASSO) penalty. Unlike existing methods based on the inverse probability weighting and the Buckley and James estimator ( Buckley and James, 1979 , Biometrika 66, 429–436), the proposed approach does not require additional assumptions about the censoring and always yields a solution that is convergent. Furthermore, the proposed estimator leads to a stable regression model for prediction even if the AFT model fails to hold. To facilitate the adaptive selection of the tuning parameter, we detail an efficient numerical algorithm for obtaining the entire regularization path. The proposed procedures are applied to a breast cancer dataset to derive a reliable regression model for predicting patient survival based on a set of clinical prognostic factors and gene signatures. Finite sample performances of the procedures are evaluated through a simulation study.
Keywords:AFT model    LASSO regularization    Linear programming
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号