首页 | 本学科首页   官方微博 | 高级检索  
     


Dynamic involvement of ATG5 in cellular stress responses
Authors:H H Lin  S-M Lin  Y Chung  S Vonderfecht  J M Camden  P Flodby  Z Borok  K H Limesand  N Mizushima  D K Ann
Abstract:Autophagy maintains cell and tissue homeostasis through catabolic degradation. To better delineate the in vivo function for autophagy in adaptive responses to tissue injury, we examined the impact of compromised autophagy in mouse submandibular glands (SMGs) subjected to main excretory duct ligation. Blocking outflow from exocrine glands causes glandular atrophy by increased ductal pressure. Atg5f/−;Aqp5-Cre mice with salivary acinar-specific knockout (KO) of autophagy essential gene Atg5 were generated. While duct ligation induced autophagy and the expression of inflammatory mediators, SMGs in Atg5f/−;Aqp5-Cre mice, before ligation, already expressed higher levels of proinflammatory cytokine and Cdkn1a/p21 messages. Extended ligation period resulted in the caspase-3 activation and acinar cell death, which was delayed by Atg5 knockout. Moreover, expression of a set of senescence-associated secretory phenotype (SASP) factors was elevated in the post-ligated glands. Dysregulation of cell-cycle inhibitor CDKN1A/p21 and activation of senescence-associated β-galactosidase were detected in the stressed SMG duct cells. These senescence markers peaked at day 3 after ligation and partially resolved by day 7 in post-ligated SMGs of wild-type (WT) mice, but not in KO mice. The role of autophagy-related 5 (ATG5)-dependent autophagy in regulating the tempo, duration and magnitude of cellular stress responses in vivo was corroborated by in vitro studies using MEFs lacking ATG5 or autophagy-related 7 (ATG7) and autophagy inhibitors. Collectively, our results highlight the role of ATG5 in the dynamic regulation of ligation-induced cellular senescence and apoptosis, and suggest the involvement of autophagy resolution in salivary repair.Autophagy is a catabolic process that has an essential role in cellular adaptation to multiple types of stress by recycling of superfluous cellular material, safeguarding quality control in organelles, removing protein aggregates, and eliminating intracellular pathogens.1 Conceptually, autophagy serves a pro-survival mechanism by providing sources of energy and biosynthetic building blocks during starvation, removing dysfunctional organelles and large aggregates toxic to cells to avoid unwarranted cell death. However, upon sustained stress conditions, cell death eventually takes place either by excessive autophagy or by the induction of apoptosis and/or necrosis pathways.2 The ATG5, autophagy-related 5, has a pivotal role in autophagosome formation. Mouse neonates systemic deficient for ATG5 die within a day of birth,3 whereas mice depleted of Atg5 in selected tissues have abnormalities ranging from neurodegeneration4 and age-related cardiomyopathy5 to liver tumors.6Autophagy and senescence are two distinct, however functionally intertwined, cellular responses to stress.7 Cellular senescence is a state of stable growth arrest that is induced by telomere shortening, DNA-damage, oncogenes or other stresses. In general, senescence is a heterogeneous phenotype, which is characterized by a senescent-associated secretory phenotype (SASP), expression of senescence-associated β-galactosidase (SA-β-gal) and other senescent markers, and increased cell size.8 In culture system, inhibiting or enhancing autophagy leads to the opposite effect on premature senescence.9, 10, 11, 12 While premature senescence can be induced by a plethora of cell-extrinsic and cell-intrinsic stressors,13 little is known about the possible role of autophagy in modulating injury-induced cellular senescence in vivo. Rodent salivary duct ligation has been used as an experimental model system to study salivary gland atrophy, which often occurs in patients with Sjögren''s syndrome or receiving head and neck radiation therapy. Although autophagy induction has been implicated in the repair of rapamycin-treated, post-ligated salivary glands,14,15 the roles played by autophagy in regulating the injury responses in submandibular glands (SMGs) have not been explored.To explore how autophagy contributes to salivary (patho)physiology, we established a transgenic mouse model deficient for ATG5 in the salivary acinar cells. Previously, we have identified a role for basal autophagy in salivary homeostatic mechanisms that restrict acinar cell size and the number of secretory granules.16 Here, we report that ligation of the major SMG excretory duct triggers the glandular atrophy and the induction of autophagy. By comparing the acute and subacute stress responses from autophagy-impaired and -competent SMGs with duct obstruction, we established the intrinsic roles of ATG5-dependent autophagy in modulating salivary inflammatory responses, stress-induced senescence and cell death, which all occur sequentially in response to tissue injury. Our results provide in vivo evidence that stress-induced autophagic response is indispensable for resolving premature senescence in duct cells of the ligated glands, whereas ATG5 deficiency leads to delayed acinar cell death.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号