首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Regulation of beta-adrenergic receptors and calcium channel agonist binding sites in cultured human embryonal smooth muscle cells
Authors:J Drímal
Institution:Institute of Experimental Pharmacology, Slovak Academy of Sciences, Bratislava.
Abstract:Recent electrophysiological studies with cell membrane patches of cardiac myocytes and an electrically excitable cell line derived from rat pituitary tumor suggested that voltage activated calcium channels must be phosphorylated to respond to membrane depolarization (Armstrong and Eckert 1986; Trautwein and Kameyama 1986). In view of the "phosphorylation hypothesis" we investigated the adenylate-cyclase activity, the characteristics of beta-adrenergic and calcium channel agonist binding sites in control and desensitized (exposure to isoproterenol) human embryonal cells (HEC), and in fragmented membrane preparations of canine coronary smooth muscle. Our results suggest that down-regulation of the membrane-bound beta-adrenergic receptors, induced by isoproterenol in human embryonal cells and also in adult canine vascular tissue, results in physical translocation of beta-adrenergic binding sites into the light membrane fraction. This phenomenon is accompanied with an increased intracellular concentration of cAMP in and an increased binding of the calcium channel agonist (3H) BAYK 8644 to both HEC and canine smooth muscle membrane preparations. It could be concluded that phosphorylation of beta-adrenergic receptors regulates not only the beta subcellular distribution of the beta receptors but also the availability of calcium channel agonist binding sites in the cellular membrane.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号