Water transport and the distribution of aquaporin-1 in pulmonary air spaces |
| |
Authors: | Effros, R. M. Darin, C. Jacobs, E. R. Rogers, R. A. Krenz, G. Schneeberger, E. E. |
| |
Abstract: | Effros, R. M., C. Darin, E. R. Jacobs, R. A. Rogers, G. Krenz, and E. E. Schneeberger. Water transport and thedistribution of aquaporin-1 in pulmonary air spaces.J. Appl. Physiol. 83(3): 1002-1016, 1997.Recent evidence suggests that water transport between the pulmonary vasculature and air spaces can be inhibited byHgCl2, an agent that inhibitswater channels (aquaporin-1 and -5) of cell membranes. In the presentstudy of isolated rat lungs, clearances of labeled(3HOH) and unlabeled water werecompared after instillation of hypotonic or hypertonic solutions intothe air spaces or injection of a hypotonic bolus into the pulmonaryartery. The clearance of 3HOHbetween the air spaces and perfusate after intratracheal instillation and from the vasculature to the tissues after pulmonary arterial injections was invariably greater than that of unlabeled water, indicating that osmotically driven transport of water is limited bypermeability of the tissue barriers rather than the rate of perfusion.Exposure to 0.5 mM HgCl2 in theperfusate and air-space solution reduced the product of the filtrationcoefficient and surface area(PfS)of water from the air spaces to the perfusate by 28% afterinstillation of water into the trachea. In contrast, perfusion of 0.5 mM HgCl2 in air-filled lungs reducedPfSof the endothelium by 86% after injections into the pulmonary artery, suggesting that much of the action of this inhibitor is on the endothelial surfaces. Confocal laser scanning microscopy demonstrated that aquaporin-1 is on mouse pulmonary endothelium. No aquaporin-1 wasfound on alveolar type I cells with immunogold transmission electronmicroscopy, but small amounts were present on some type II cells. |
| |
Keywords: | |
|
| 点击此处可从《Journal of applied physiology》浏览原始摘要信息 |
|
点击此处可从《Journal of applied physiology》下载全文 |
|