首页 | 本学科首页   官方微博 | 高级检索  
     


Modeling of the major gas vesicle protein, GvpA: from protein sequence to vesicle wall structure
Authors:Ezzeldin Hussein M  Klauda Jeffery B  Solares Santiago D
Affiliation:Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA.
Abstract:The structure and assembly process of gas vesicles have received significant attention in recent decades, although relatively little is still known. This work combines state-of-the-art computational methods to develop a model for the major gas vesicle protein, GvpA, and explore its structure within the assembled vesicle. Elucidating this protein's structure has been challenging due to its adherent and aggregative nature, which has so far precluded in-depth biochemical analyses. Moreover, GvpA has extremely low similarity with any known protein structure, which renders homology modeling methods ineffective. Thus, alternate approaches were used to model its tertiary structure. Starting with the sequence from haloarchaeon Halobacterium sp. NRC-1, we performed ab initio modeling and threading to acquire a multitude of structure decoys, which were equilibrated and ranked using molecular dynamics and mechanics, respectively. The highest ranked predictions exhibited an α-β-β-α secondary structure in agreement with earlier experimental findings, as well as with our own secondary structure predictions. Afterwards, GvpA subunits were docked in a quasi-periodic arrangement to investigate the assembly of the vesicle wall and to conduct simulations of contact-mode atomic force microscopy imaging, which allowed us to reconcile the structure predictions with the available experimental data. Finally, the GvpA structure for two representative organisms, Anabaena flos-aquae and Calothrix sp. PCC 7601, was also predicted, which reproduced the major features of our GvpA model, supporting the expectation that homologous GvpA sequences synthesized by different organisms should exhibit similar structures.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号